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When identifying the correct atom types to occupy the speci®c atomic locations

within newly observed structures or when assessing the plausibility of new

suggested structures with speci®c locations for speci®c types of atoms, any

information quantifying geometrically the local environments around those

locations is valuable, provided known characteristic differences exist, with

respect to this geometric information, between the different atom types. A

powerful tool for quantifying such geometries is the Voronoi tessellation; this

has been used in a pilot study of polynuclear aromatic hydrocarbons. It has been

found that perfect identi®cation of all C and H atoms may be achieved through

the examination of polyhedral volumes and surface areas. The use of a weighted

face-area average is also found to be a useful measure of local structure. Simple

neural network models that may be used for atom-type prediction are given

in the paper. It is expected that the present approach will be useful in

distinguishing between atoms that have close scattering curves whilst displaying

similar crystallographic behaviour.

1. Introduction

With the aid of X-ray, neutron and electron diffraction, it is

possible to analyse a crystalline structure and deduce, limited

by the resolution of the experiment, where the individual

atoms are situated relative to the unit cell, the inherent

dimensions and angles of which may also be determined. Each

atomic position does not, however, have its own beacon

openly signalling its type to the experimenter and the

diffraction experiment therefore begs the question: `Which

atom type goes where?'.

Of a somewhat similar nature is another question that

constantly appears in the modelling of new, as yet unrealized,

structures: `Given a new suggested structure, with given atom

types in speci®c positions relative to a speci®c unit cell, could it

physically exist as a stable state?'.

A very obvious way, for both questions, to start seeking an

answer is to try to quantify the local environments in which the

atom types involved are known to occur and subsequently

compare the local environments found in, or proposed for, the

new structure with those known to be typical of the various

atom types.

If a particular local environment in a new structure is

signi®cantly akin to one known to apply to a certain atom type,

while being signi®cantly unlike those known for all other atom

types, then it may be inferred that the corresponding atom in

the new structure is of that same type. Moreover, if the new

local environment is unlike all those seen before then, if the

new structure is real, it may be concluded that an entirely new

situation has been found1 whereas, if the new structure has

been suggested by atomistic modelling, it may, at least initially,

be assumed that the suggested structure cannot exist as a

stable state in the physical world.

This procedure, then, involves two distinct problems:

(i) how to quantify an atom's local environment;

(ii) how to compare a newly observed local environment

with those already known.

1.1. Quantifying the local environment around an atom

The immediate suggestion arising in the mind of any person

with a knowledge of chemistry will probably be to make use of

bond lengths and bond angles. Atoms believed to be bonded

are invariably in each other's proximity and maintain a

distance between them that is strongly in¯uenced by their

respective atom types and valences. Hence, bond lengths

represent a good way of quantifying an atom's surroundings.

Clearly, however, these interatomic distances cannot exhaus-

tively characterize the spatial distribution of other atoms

surrounding a central one; partly because not all atoms in the

central atom's neighbourhood will be bonded to it, and so will

not be constrained by a bond length, partly because bonded

atoms, whose distance from the central atom is constrained,

still have two degrees of freedom left to position themselves

1 Or that an error has occurred, either in the diffraction experiment or in the
subsequent analysis.
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around the central atom. The existence, then, of bond angles,

which measure the angle between neighbouring bonds, and

which also show a strong regularity for speci®c pairs of bond

types (as given by the atom types and valences involved),

certainly aids in the quanti®cation of local environments but,

again, applies only to atoms bonded in a chemical sense.

An alternative much more comprehensive and certainly

more objective2 way of characterizing the local geometry in

which an atom is embedded is to ®rst calculate the Voronoi

polyhedron of that atom and then calculate the various

features of the polyhedron.

1.2. The Voronoi tessellation

The Voronoi tessellation is a construction de®ned for a

group of generating points existing in a distinct space: each

generating point is enclosed in exactly one polyhedron and

these polyhedra taken together completely ®ll the space,

without overlapping, and without leaving any gaps between

them. Moreover, every location within the distinct space that

is closer to one of the generating points than to any of the

others will be enclosed in that point's Voronoi polyhedron.

Locations equidistant from two generating points, and nearer

to those than to any others, will lie in the Voronoi face that

separates the polyhedra of those two points (which, therefore,

are Voronoi neighbours). Locations equidistant from three

generating points, and nearer those than any others, lie on the

edge where the polyhedra of these three meet. Locations

equidistant from four, or more, generating points, and nearer

those than any others, are Voronoi vertices ± the corners of the

polyhedra of the generating points involved.

The Voronoi tessellation is thus a purely mathematical

concept but, given that the equilibrium positions of atomic

nuclei in solids are determined, to a good accuracy, as points, it

is not unreasonable to apply this tessellation to crystal struc-

tures. If this is in fact performed, a speci®c interpretation of

the geometric structures of the tessellation suggests itself: the

polyhedra may be considered to represent the atoms, the faces

represent the interactions between neighbouring atoms, the

edges represent interactions between three mutually adjacent

atoms with the vertices, ®nally, representing either the inter-

actions between all atoms meeting there or, alternatively, the

voids between the atoms.

If accepting this interpretation, a number of ways exist of

quantifying the local environment in which an atom is

embedded. Representative measures of atomic size would

naturally be polyhedral volume and surface area, as well as the

sum of the lengths of all edges on the polyhedron (giving

three-, two- and one-dimensional measures of atomic size).

Interactions between two neighbours could, for example, be

represented via interatomic distance (nucleus to nucleus),3

area of face representing interaction, solid angle under which

face is seen from either of the atoms' nucleus, volume

subtended at the nuclei under the face, or length of circum-

ference of face. Interactions between three mutually adjacent

atoms could, for example, be quanti®ed via length of the

common edge, angle under which this edge is seen from either

of the nuclei, or area or length of circumference of triangle

given by the edge and any one of the nuclei. Voids could be

quanti®ed via distances to surrounding nuclei or distances to

neighbouring vertices (each vertex being the neighbour of

another if they are joined via an edge).

Evidently, there are numerous alternative ways of quanti-

fying speci®c physical/chemical concepts and, ideally, they

would all be considered.4 This may not always be feasible, if

ever, but clearly the more unique views of a speci®c feature

are available, the more truthfully can it be characterized and

understood.

In summary, the Voronoi tessellation may be used to

quantify the arrangement of nucleonic equilibrium positions

by virtue of their point-like nature and, on accepting the

representational scheme outlined, be used to quantify the

local environments around individual atoms in terms of atomic

interactions. It should be borne in mind, however, that there

will be grievances as to the validity of this scheme if

approaching it from a traditional chemical point of view owing

to its overt neglect of any information concerning atomic radii.

This was addressed in an earlier paper (Christensen &

Thomas, 1999). For the task at hand, learning the character-

istics of local environments in crystals, we need not be

concerned, however, as long as we approach it consistently; we

do not need to interpret the Voronoi geometric structures in

any particular way, so far as we are considering arrangements

of nucleonic equilibrium positions. On the other hand, we may

readily adopt any one, in order to guide our understanding of

our calculations, if we so desire.

1.3. Comparing local environments

Once a set of variables quantifying local geometry has been

decided upon, the problem becomes one of comparison

between these geometric characteristics of the atoms in the

new structure and those of atoms in crystal structures

observed and analysed earlier. This is by no means a trivial

task. First, to get the most complete understanding of a

particular atom type, it is necessary to take all known instances

of this into consideration; a daunting if not insurmountable

project, with the overall number of observed structurally

unique atoms running into the tens of millions. However, a

great deal of similarity must be expected to exist between

structurally unique atoms of the same type, and so it may be

hoped that, taking only a smaller subset of all known struc-

turally distinct instances of an atom type into consideration, it

may still be possible to get a good understanding of that atom

type's local geometric characteristics. A reasonable approach

to selecting such a subset may be to include crystal structures

of a similar nature to that of the new structure in point; i.e. if
2 The bond model of molecules and solids is, as is any model, necessarily partly
subjective.
3 Cf. bond length, but note that this would also apply for non-bonded
interactions.

4 As long as they all contribute unique information; if a speci®c variable can be
derived from a combination of the others, it is logically redundant and should
be omitted.



the new structure is inorganic, include only inorganic

compounds, if a protein, include only proteins etc.

With the subsets of atoms from the literature selected, and

their local geometric features quanti®ed, the actual compari-

sons may proceed. This may be accomplished on an instance-

by-instance basis; if the issue is to ascertain the type of a

speci®c atom in a new structure, this may be compared, feature

for feature, against all the atoms amongst the established

structures, with the type eventually given by the one known

atom whose features most closely resemble those of the new

one. This nearest-neighbour approach may be prohibitively

slow, however, and a more prudent way to address the

problem may be to summarize the information contained in

the data of the atoms in the known structures via data-driven

modelling, establishing a model of local geometric character-

istics for each atom type and, subsequently, compare the new

atoms with the models.

2. Data-driven modelling

To extract knowledge about the nature of the properties of an

underlying data-generating system, given a set of data, and, in

turn, utilize this knowledge to predict the properties, given

other data, is the problem addressed by modelling. Arguably,

this is the most basic of tasks since it, in essence, is the very

process known as learning. Not surprisingly, it has been of the

highest concern to all areas of science and, equally unsur-

prisingly, it has been approached in very many different ways ±

more often than not in complete or near-complete ignorance

of the understanding of modelling previously obtained in

other areas of science and mathematics.

Three fundamental questions must be answered before a

mathematical model may be derived:

(i) which kinds of mathematical functions may be

employed?

(ii) how is the quality of a model assessed?

(iii) which guiding principle should be used to search for the

best model among those that may be considered [cf. (i)

above]?

The various techniques, and all their subvariants, differ,

often profoundly, in their answers to these questions, re¯ecting

the fact that they have arisen in very disparate scienti®c

communities with widely different fundamental assumptions

for the modelling process.5 No method has established itself as

the indisputably best in every regard, and all methods have

their speci®c strengths, weaknesses, protagonists and antag-

onists. Moreover, as mathematical modelling is very much still

an active research area, all methods are continually improved

while new approaches are introduced at irregular intervals.

For the present project, which represents a ®rst attempt at

quantifying structural characteristics of crystals via adaptive

numeric modelling, it was decided to employ one of the most

basic techniques available: the feed-forward neural network,

also known as the multilayer perceptron, MLP.

Fig. 1 shows the schematic of a MLP; it is a complex

mathematical function, realized through a network of inter-

connected arti®cial neurons, most commonly distributed in

three layers: input, hidden and output, with each connection

between two neurons given a unique weight. Mathematically,

the function is given as

y �Pm
i�1

woutput;i fi�x�; �1�

where y is the output, m is the number of hidden layer

neurons, x is the input vector,6 woutput, i are the output weights

(from hidden to output layer) and

fi�x� � ai

Pn
j�0

winput;j;i xj

 !
�2�

are subfunctions, performed at the hidden neurons, where n is

the number of inputs, winput, j, i are the weights (from input to

hidden layer), xj are the individual inputs (x0 is a constant set

permanently to 1) and a, the so-called activation function, is

typically, although by no means necessarily, given by a sigmoid

function, e.g. the tanh function.7

In other words, the MLP is a large equation of x, with

numerous additive terms, each of which includes a coef®cient

(termed weight in the machine-learning community).

The MLP is therefore capable of calculating arbitrary

values, based on the values of the input vectors and the

weights; the trick is to tune the weights so that the network

always predicts the right output, given a speci®c input. This is

achieved during the training phase: the network weights are

given random initial values, the MLP is presented with a set of

observed (input, output) pairs and gives, based on the input

values and the weights, a prediction for each training point.

These initial predictions are very likely very different from the

observed output values, and the training therefore proceeds
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Figure 1
Schematic illustration of the structure of a MLP with one hidden layer.

5 Notable disciplines where modelling plays the focal role include frequentist
statistics, Bayesian statistics, data mining and machine learning.

6 The input vector is simply a vector containing the variables, based on which
the output is sought calculated/predicted. In our case, for example, a relevant
input vector could be (Voronoi volume of atom, Voronoi surface area of
atom)T. The output, then, is that property which is sought predicted.
7 Crucially, this activation function must be non-linear to allow the MLP to
adapt to non-linear system behaviour.
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with successive alterations of the weights and subsequent re-

evaluation of the prediction accuracies. This continues until

the predictions are adequately accurate.8

In the present case, where the objective is prediction of

atom type, we are concerned with classi®cation, rather than

regression, and the outputs are therefore not real numbers; we

have two possible outcomes: H or C, and we want the MLP to

predict one or the other. This is achieved by assigning a single

speci®c numeric output value to all data points of type C and a

different single output value to all data points of type H while

adopting the convention that, if the predicted output value is

closer to the former, the prediction is C, while it is H if closer

to the latter. The speci®c values used here are governed by the

fact that the tanh function converges to �1 as its argument

approaches �1 and useful values therefore must lie entirely

within that range (chosen here were 0.9 for C and 0.1 for H,

with the discriminating border lying at 0.5).

The optimization of the MLP weights is a highly complex

problem, in that many different solutions may exist that are all

fairly good though not optimal. In reality, a search for the

perfect set of weights is futile and one must make do with a

suboptimal one, one that may have relative strengths in certain

ways and relative weaknesses in others. If, now, the optimi-

zation process is repeated numerous times, with a different

solution found every time (a highly realistic situation), it may

well be that some models are strong where the others are weak

and so by combining the models into a committee it may be

hoped that all inherent model weaknesses are offset by

equally inherent strengths, and, as long as the individual

models are at least fairly good on their own, the committee

will be better, in terms of prediction accuracy, than the indi-

vidual models are on average. This has been established in the

modelling communities, both experimentally and on theore-

tical grounds (Krogh & Vedelsby, 1995). For this reason, it was

decided for the present work to generate several individual

models and combine them into a committee.

3. Data and procedure

Two individual problems pertaining to crystallography were

stated in the Introduction: ®rst, obtaining the ability to

ascertain the atom type for any atom, based only on knowl-

edge of its coordinates and those of the surrounding atoms

and, secondly, obtaining the ability to predict, given only

proposed atomic coordinates, whether these are physically

feasible for atoms of a proposed type. It is the ®rst of these

that has been addressed in the present work, while the second

is the subject of ongoing research by the author.

The raw data, on which the current modelling problem is

based, are the accurate locations of all atoms in a range of

polynuclear aromatic hydrocarbons (PAH), in crystalline

form, along with information on all unit-cell dimensions and

angles. The speci®c PAHs studied are listed in Appendix A;

they were obtained from the Chemical Database Service at

Daresbury (Fletcher et al., 1996). The reason for this particular

choice is entirely pedagogical; clearly, distinguishing between

C and H in aromatic hydrocarbons is not an unresolved

problem, dif®culties only arise when attempting to distinguish

between atoms with similar scattering curves when they

display similar crystallographic behaviour, e.g. between N and

O, O and F, Al and Si. The choice of C and H will, however,

serve well to illustrate the approach since the procedure is the

same in any case, and whilst the resulting models discrimi-

nating between C and H may be of low dimensionality (C and

H being really very different) and thus possibly rendered

graphically, models for the more challenging cases are entirely

unlikely to be equally good-natured, and therefore less satis-

factory to demonstrate the approach.

Each of the PAHs was subjected to a Voronoi tessellation;

each atom enveloped in its own Voronoi polyhedron and

various characteristics of these polyhedra calculated. Four

variables quantifying the local environment around the atoms

were chosen for modelling: (i) volume and (ii) total surface

area of the Voronoi polyhedron, (iii) a weighted average of

the areas of the faces on the polyhedron, and (iv) the similarly

weighted standard deviation from this weighted average.

Polyhedral volume and overall surface area have been studied

many times in various settings in the past, see e.g. Mackay

(1972), Richards (1977), Koch & Fischer (1980), Blatov et al.

(1995), Andersson & HovmoÈ ller (1998); the weighted

averages need some clari®cation, however. The typical

Voronoi polyhedron obtained in crystal structures has many

faces, most of which are very small. If a straight average of all

face areas were to be calculated, it would be dominated by

these small faces. Paradoxically, it is the largest faces that

should be expected to correspond to the most structurally

signi®cant interactions, while the small faces should be

expected to be of little consequence. Subsequently, a better

measure of average face area should be obtainable by

weighting the contribution of each face in accordance with its

expected importance. One way of doing this is by weighting

the contribution of a face with its fraction of the entire poly-

hedral surface area:

Table 1
Normalization constants.

Input

Name Symbol xmin xmax

Surface area At 22.14 AÊ 2 38.69 AÊ 2

Volume V 5.90 AÊ 3 18.13 AÊ 3

Face area average hAi 2.70 AÊ 2 7.41 AÊ 2

Face area standard
deviation

� 1.66 AÊ 2 3.25 AÊ 2

8 This is somewhat simpli®ed in that also the network complexity will be
subject to alteration, primarily through the number of hidden layer neurons;
the more of these, the more complex a functionality the MLP may
accommodate. If, however, the MLP is given too much ¯exibility, it is highly
prone to introducing quite wild ¯uctuations, while being `right on target' when
the training data are concerned. In this case, the MLP is said to be over®tting
the training data; these have been learned extremely well, at the cost of poor
generalization ability; the wild ¯uctuations mean the MLP function deviates
strongly from the physical system in between the training points.



hAi �Pn
i�1

�Ai=At�Ai; �3�

where hAi is the weighted face area average, n the number of

faces, Ai is the area of face i and At is the total surface area of

the polyhedron.9 Similarly, a weighted standard deviation

from this average can be de®ned as:

� � Pn
i�1

�Ai=At��Ai ÿ hAi�2
� �1=2

: �4�

These measures were adopted for the subsequent modelling.

The values were all normalized to lie between 0 and 1:

xnormalized �
xnon-normalized ÿ xmin

xmax ÿ xmin

; �5�

where xmin and xmax are the smallest and largest values found

in the data set; i.e. the largest volume in the normalized data is

1 while the smallest is 0. Likewise for the other inputs. The

normalization constants are given in Table 1.

Two distinct modelling line-ups were chosen; one in which

all four properties were included and one where only poly-

hedral volume and surface area were employed. The reason

for conducting the smaller modelling problem, which is of

course entirely included in the larger problem, is mostly

pedagogical; models that try to describe a system of four

different independent variables may be four-dimensional,

models of systems with only two independent variables may

never be more than two-dimensional and therefore readily be

illustrated graphically. Moreover, a two-dimensional model-

ling problem is much smaller than a four-dimensional one10

and, with a given amount of effort, a better solution11 may be

expected for the smaller problem. The four-dimensional

problem was considered as well, just in case perfect discrimi-

nation could not be achieved with the two-dimensional model.

The number of data points is limited by the numbers of

symmetrically inequivalent atoms in the structures studied and

was, for this study, 1568 atoms, 960 of which were C and the

remaining 608 were H.

These data points are shown in six bivariate plots (Figs. 2±7)

for the six possible bivariate views (V±At ; V±hAi; hAi±�; V±�;

At±hAi; At±�); C given by solid markers, H by open circles. It is

readily apparent that the C and H atoms tend to group

separately, and for that reason it was expected that a MLP

with only a single neuron in the hidden layer would be able to

separate the two atom types well, while being in no danger of

over®tting the data. Accordingly, that MLP structure was

chosen. As a consequence hereof, there would be only one

output weight for each model, hence this weight was set to 1

and not allowed to vary (effectively removing it from the

model).

For the purpose of obtaining a realistic estimate of the

model's ability to correctly classify atoms from new, hitherto

unseen, systems, three systems were excluded from the

training process and used only for testing: tribenzopyrene,

tetrabenzoperylene and anthrabenzonaphthopentacene.

These three systems were among the most complex with large

numbers of atoms in the asymmetric unit. Hence, the numbers

of atoms available for training were 822 C and 538 H, the test

set comprising 138 C and 70 H atoms.

In all, ®ve individual models were trained on the training

data, and a committee known as a basic ensemble (Perrone &

Cooper, 1993) of these was formed. The predictive capability

of this ensemble, which is simply an equally weighted linear
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Figure 3
Data-distribution plot showing volume and average face area. C given by
solid markers, H by open circles.

Figure 2
Data-distribution plot showing volume and total surface area. C given by
solid markers, H by open circles. The discriminating border due to the
two-variable committee is indicated.

9 A different approach is to disregard all faces smaller than a certain set
fraction of the total surface area [suggested in Fischer & Koch (1979), though
not used there in conjunction with average face areas]; this, however, gives the
somewhat arbitrary cut-off value great in¯uence on the result, and the
smoothly varying in¯uence of faces with face area, given here, was preferred.
10 This is a result of what, in modelling terminology, generally is referred
to as the `curse of dimensionality'; the size of the modelling space grows
exponentially with increased dimensionality.
11 Relative to the theoretically best possible for the particular problem.
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combination of the constituent models, was then assessed on

the test data in terms of the misclassi®cation risk (in %),

calculated separately for C and H atoms. The individual risks

of misclassi®cation for each of the constituent models were

also calculated.

4. Results

The misclassi®cation risks for the two problems, two-variable

and four-variable, are shown in Tables 2 and 3, respectively.

For the two-variable problem, three of the constituent models

correctly classi®ed all the atoms in the test set, while the

remaining two each classi®ed 1 H atom wrongly as a C atom,

corresponding to 1.43% of all H atoms. On average, the

models then misclassi®ed 0.57% of H atoms. The committee,

however, classi®ed all atoms correctly. The expectation is,

therefore, that this committee will correctly classify all atoms

in polynuclear aromatic hydrocarbons, based solely on their

Voronoi volumes and surface areas. The discriminating border

between the C and H regions, due to the committee, has been

drawn in Fig. 2.

The weights for the individual models are given in Table 4;

these apply to equation (2) where a is the tanh function, while

m = 1 and woutput, i = 1 in equation (1). Thus, for example,

model 1 is

ymodel 1 � tanh�1:718� 3:746At ÿ 8:909V�; �6�

where the inputs, At and V have been normalized [cf. Table 1

and equation (5)]. The committee prediction is

ycommittee � 1
5

P5

i�1

ymodel i: �7�

For the four-variable problem, all individual models correctly

classi®ed all atoms in the test set and the committee, conse-

quently, did the same. The weights for these models are given

in Table 5.

5. Discussion

The main objectives of this study have been to illustrate an

approach to using Voronoi tessellation variables to quantify

local structural characteristics of atom types with carbon and

hydrogen atoms in polynuclear aromatic hydrocarbons

providing an example. The bivariate plots in Figs. 2±7 clearly

illustrate that with such an approach there does exist a

possibility to distinguish between these two atom types; two

main clusters of points, one for C and one for H, stand out in

several of the plots.12 As undeniable as this tendency towards

separate clustering of C and H data points is, it is equally

undeniable that some combinations of variables give better

separation than others. The combination of volume and total

surface area, which possibly will be the one most easily arrived

at with the majority of Voronoi tessellation software in exis-

tence, is fairly good, with H atoms generally having both larger

volumes and surface areas. Note that taking only one of these

variables into consideration could not possibly lead to perfect

separation; both are required. And yet, even with these two

variables, the separation is not large. The two two-variable

models that misclassi®ed one H atom both faltered on the

same atom; the one with the smallest volume, and it is clear

that this atom does not give much leeway for a separating

border.

The weighted face area average, hAi, does seem to be a very

useful means of separating C and H, though, again, it is not

Table 2
Performance of models: two-variable problem.

Misclassi®ed C Misclassi®ed H

Model No. % No. %

1 0 0 0 0
2 0 0 1 1.43
3 0 0 0 0
4 0 0 1 1.43
5 0 0 0 0
Average 0 0 0.4 0.57
Committee 0 0 0 0

Table 3
Performance of models: four-variable problem.

Misclassi®ed C Misclassi®ed H

Model No. % No. %

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
Average 0 0 0 0
Committee 0 0 0 0

Table 4
Model weights: two-variable problem.

Model
winput 0,1

constant
winput 1,1

area
winput 2,1

volume
woutput 1

(clamped)

1 1.718 3.746 8.909 1
2 1.956 3.110 8.728 1
3 1.467 3.769 8.199 1
4 1.239 3.251 6.606 1
5 1.631 4.322 9.616 1

Table 5
Model weights: four-variable problem.

Model
winput 0,1

constant
winput 1,1

area
winput 2,1

volume
winput 3,1

hAi
winput 4,1

�
woutput 1

(clamped)

1 0.871 0.029 9.686 4.199 0.855 1
2 0.173 8.170 8.150 9.882 1.014 1
3 0.378 2.962 1.488 5.376 0.217 1
4 0.192 1.249 9.462 8.511 1.006 1
5 0.309 6.208 5.570 6.238 3.135 1

12 The C cluster will be seen to consist of two smaller clusters; this corresponds
to a difference in bond structure and is subject to on-going research by the
author.



adequate on its own. Combined with either volume or total

surface area, however, it does provide a very good opportunity

for separation. The fact that the four-variable models on the

whole fared better than the two-variable models is almost

certainly, in part, due to the use of hAi. More generally,

though, the use of more variables, each of which is somewhat

useful as a means of separation, will make such separation of

clusters easier; if the distance along a variable between the

centres of the clusters is di, where i runs over the number of

variables, then the distance in the high-dimensional space is

d � P
i

d2
i

� �1=2

: �8�

In other words, the more variables, the more the centres of the

clusters are pulled apart; i.e. better separation is a conse-

quence.

Among the four, the weighted standard deviation from hAi,
�, stands out as not being very useful, although there is a

tendency for carbon atoms to have the higher values. � could

probably be dropped as an input without making the separa-

tion task more dif®cult and, in fact, the model optimization

would be faster, with one weight less to determine. One thing

this would seem to suggest is that, if possible, as many vari-

ables as can be thought of should be calculated and their use

for separation, one at a time, be assessed. Finally, those most

useful should be included in the modelling process. However,

variables that are highly correlated with others might be better

not included as optimization time might otherwise become too

long.

Correlations clearly exist, as one would of course expect.

Volume and surface area, for example, are both measures of

size and should be correlated, as indeed they are. The nature

of the correlation differs, however, between C and H, and so

gives rise to discrimination. More surprising, correlations exist

between volume (or surface area) and average face area (for C

only), between volume (or surface area) and � (for C only)

and, vaguely, between average face area and � (both C and H).

The fact that these correlations are more pronounced for C

indicate that there is a larger degree of randomness to the H

positions than to their C counterparts; i.e. the C atoms are

more constrained in terms of position.

The MLP models generally performed well; a quick glance

at the bivariate distribution plots will suggest, however, that

nearest-neighbour models would probably also perform well.

The considerable drawback with those models is, of course,

that they are much more cumbersome (i.e. slower) to use and

also are not suited for printing in tabular form, particularly

when there are many atoms in the database from which the

training data are obtained. This does not preclude the possi-

bility that they would be more accurate, with a lower risk of

misclassi®cation and for such classi®cation tasks they should

not be readily dismissed. Nor should it be supposed that the

MLP, in general, is particularly well suited for these tasks; it is

one of the most basic of modelling approaches and, whilst the

ease of its implementation is attractive, there are many other,

potentially more powerful, techniques that may prove more

useful, particularly for more complex classi®cation problems

where several atom types are involved and/or more polyhedral

features are required for separation.

In this ability to choose more features with which to char-

acterize the local environments, to which the atoms are

con®ned, lies a prominent strength of the Voronoi approach,

as opposed to the bond length/angle approach. Whilst the

latter can clearly be used for perfect classi®cation in moder-

ately simple cases, the much larger number of possible

Voronoi variables, giving a more detailed view of the local

structure, may prove especially valuable when the complexity

of the problem is very high. It must be remembered, however,

that mere quantity is not necessarily implying quality; many
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Figure 5
Data-distribution plot showing volume and �. C given by solid markers, H
by open circles.

Figure 4
Data-distribution plot showing average face area and standard deviation
from this area, �. C given by solid markers, H by open circles.
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Voronoi variables may indeed be found to contain little, if any,

information. The weighted standard deviation from the

weighted face-area average, �, being an example thereof

although, admittedly, a variable that on its own does not seem

to provide any separation at all may still, in conjunction with

another, or even several others, enable such separation in a

higher-dimensional feature space.

Finally, the expectation that the two-variable models might

end up being better than the four-variable models, because the

optimization problem was smaller, turned out to be a moot

point; the optimization of both systems required only little

CPU time and so even the larger problem was quite tractable.

Nevertheless, if considerably more complex problems are to

be investigated, with greater similarity between the atom types

involved and possibly tens of thousands of atoms to be

included, then this issue will probably come to the fore. In

future work by the author, concerned with elucidating the

feasibility of using this technique on proteins, this will be

investigated.

6. Conclusions

In this study, it has been found that it is possible to distinguish

between C and H atoms in crystalline polynuclear aromatic

hydrocarbons through calculating the Voronoi polyhedra of

the atoms and, in turn, examining their volumes, surface areas,

weighted face-area averages and a similarly weighted standard

deviation from these.

On test data, not used for training the models, a simple

committee of ®ve multilayer perceptrons predicted, without

error, the correct atom type from information only on poly-

hedral volume and surface area, although two of the individual

models incorrectly identi®ed one H atom as C. Using also the

two remaining variables, all ®ve models trained predicted the

correct atom type for all atoms.

The success of the models stems from the fact that, in a

variable space spanned by these variables, C and H Voronoi

polyhedra tend strongly to cluster separately. This clustering is

particularly pronounced with respect to volume, total surface

area and weighted face-area average, whereas the weighted

standard deviation from the latter average is of lesser impor-

tance.

It is expected that similar success will be possible on systems

of much greater complexity, containing atoms with similar

scattering curves, although it is conceivable that more Voronoi

variables will be required in those cases. Future work will be

devoted to elucidating this point fully, with speci®c focus

initially lying on proteins and inorganic compounds.

APPENDIX A

The crystallographic data for this study were obtained with the

Crystal Structure Search and Retrieval facility (CSSR) at

Daresbury and are taken from the Cambridge Structural

Database. Numbers quoted are CSSR reference numbers.

The following compounds were included in the study.

Benzene: (2334, 2335, 2337, 2338). Naphthalene: (15282,

15283, 39183, 39184, 39185, 39186, 39187, 41288, 149593).

Anthracene: (1334, 1335, 1336, 44319, 44320, 92498, 92499,

92500, 92501, 92502, 92503). Phenanthrene: (17326, 17327,

17328, 95753). Biphenyl: (2526, 2529, 2530, 148595, 148596,

148597). Chrycene: (6089). Triphenylene: (21749, 21750).

Quaterphenyl: (18814). Benzo[c]phenanthrene: (3647).

Picene: (54600). Dibenzanthracene: (6988, 6989). Pyrene:

(18657, 18658, 18659, 18660). Perylene: (17163). Dinaph-

thoanthracene: (7949). Quaterrylene: (18773). Benzopyrene:

(2704). Annulene: (1387, 148567). Dibenzoperylene: (6998).

Coronene: (5445). Ovalene: (16356). Tribenzopyrene: (19923).

Figure 7
Data-distribution plot showing total surface area and �. C given by solid
markers, H by open circles.

Figure 6
Data-distribution plot showing average face area and total surface area. C
given by solid markers, H by open circles.



Tetrabenzoperylene: (19920). Anthrabenzonaphthopenta-

cene: (41591). Diperinaphthyleneanthracene: (108608).

The author wishes to acknowledge the use of the EPSRC's

Chemical Database Service at Daresbury.

References

Andersson, K. M. & HovmoÈ ller, S. (1998). Z. Kristallogr. 213,
369±373.

Blatov, V. A., Shevchenko, A. P. & Serezhkin, V. N. (1995). Acta Cryst.
A51, 909±916.

Christensen, S. W. & Thomas, N. W. (1999). Acta Cryst. A55, 811±820.
Fischer, W. & Koch, E. (1979). Z. Kristallogr. 150, 245±260.
Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf.

Comput. Sci. 36, 746±749.
Koch, E. & Fischer, W. (1980). Z. Kristallogr. 153, 255±263.
Krogh, A. & Vedelsby, J. (1995). Advances in Neural Information

Processing Systems 7, edited by G. Tesauro, D. S. Touretzky & T. K.
Leen, pp. 231±238. Cambridge, MA: MIT Press.

Mackay, A. L. (1972). J. Microsc. 95, 217±227.
Perrone, M. P. & Cooper, L. N. (1993). In Neural Networks for Speech

and Image Processing, edited by R. J. Mammone. London:
Chapman & Hall.

Richards, F. M. (1977). Ann. Rev. Biophys. Bioeng. 6, 151±176.

Acta Cryst. (2002). A58, 171±179 Christensen � Classification of atom types 179

research papers


